Crystal and Molecular Structure of Di- μ-carbonyl-\{ μ-carbonyl-bis[(methyldiphenylphosphine)platino]\}dicarbonyl(methyldiphenylphosphine)ruthenium (2Ru-Pt)(Pt-Pt). A Substituted Heteronuclear Cluster Carbonyl of Unexpected Asymmetry

Abstract

By Anthony Modinos and Peter Woodward," Department of Inorganic Chemistry, The University, Bristol BS8 1TS

Crystals of the title compound (1) are triclinic, space group $P \overline{1}$, with $Z=2$ in a unit cell of dimensions: $a=10.694$ (3). $b=22.424(7), c=8.938(2) \AA, \alpha=83.41(2), \beta=90.02(2), \gamma=92.42(2)^{\circ}$. The structure has been elucidated by conventional heavy-atom methods from 5002 non-zero intensities measured on a diffractometer, and refined to $R 0.100$. The three metal atoms are bonded to form a triangle which is bridged on all three sides, approximately symmetrically, by carbonyl groups orientated perpendicular to the corresponding metal-metal bond in a coplanar cyclic system. Each Pt atom carries one phosphine ligand with the Pt-P bond in the equatorial plane. The third phosphine is bonded axially to the ruthenium atom and is trans to one of the two terminal carbonyl groups also attached to Ru. The equatorial carbonyl group, surprisingly, is not symmetrically placed with respect to the two Ru-Pt bonds. probably for steric reasons; in consequence the two Ru-Pt bond lengths are different [2.707(2) and $2.729(2) \AA$], the longer bond lying opposite to the larger $\mathrm{Pt}-\mathrm{Ru}-\mathrm{CO}$ angle. Pt-Pt Is $2.647(2)$, and mean $\mathrm{Pt}-\mathrm{P}$ $2.262(7) \mathrm{A}$.

Substiruted heteronuclear $\mathrm{Ru}-\mathrm{Pt}$ cluster carbonyls may be prepared by reaction of low-valent platinum complexes $\left[\mathrm{Pt}_{(}\left(\mathrm{PR}_{3}\right)_{4}\right]$ or $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}\right.$ (olefin $\left.)\right]$ with $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]^{1}$ Compounds of stoicheiometry $\mathrm{RuPt}_{2}-$ $(\mathrm{CO})_{5} \mathrm{~L}_{3}\left(\mathrm{~L}=\mathrm{PPh}_{2} \mathrm{Me}\right)$ have been shown, from their i.r. and ${ }^{1} \mathrm{H}$ n.m.r. spectra, ${ }^{1}$ to possess the probable structure (I); our X-ray results confirm this overall structure but

(I) $L=\mathrm{MePh}_{2} P$
reveal further that whereas the phosphorus atoms of the ligands attached to the platinum lie in the plane of the metal triangle, that of the ligand attached to ruthenium lies almost perpendicular to this plane.

EXPERIMENTAL

Crystals of (I) grow as golden needles along the crystallographic axis c. The one chosen for intensity-data collection was of dimensions $0.04 \times 0.07 \times 0.19 \mathrm{~mm}$, and was mounted on a Syntex $P 2_{1}$ four-circle autodiffractometer according to methods described earlier. ${ }^{2}$ Intensities were collected in the range $3.6^{\circ}<2 \theta<45.0^{\circ}$ with Mo- K_{α} X-radiation and a graphite monochromator. Scan rates varied from 0.0337 to $0.997^{\circ} \mathrm{s}^{-1}$ according to the magnitude of the sampled peak count. Six check reflections were remeasured after every 60 intensity measurements and the decay over 152 h crystal-exposure time was $3.5-6.1 \%$; this was not considered sufficient to warrant correction. Reflections for which $I \leqslant 2.5 \sigma(I)$ were regarded as unobserved for the purposes of structure solution and preliminary refinement. Of the 5596 total independent reflections, 3533 were considered observed and 5002 had $I>0$.

Crystal Data.- $\mathrm{C}_{44} \mathrm{H}_{39} \mathrm{O}_{5} \mathrm{P}_{3} \mathrm{Pt}_{2} \mathrm{Ru}, M=1231.5$, Triclinic, $a=10.694(3), b=22.424(7), c=8.938(2) \AA, \alpha=83.41(2)$, $\beta=90.02(2), \quad \gamma=92.42(2)^{\circ}, \quad D_{\mathrm{m}}=1.8(1), \quad Z=2, \quad D_{\mathrm{c}}=$
${ }_{1}$ M. I. Bruce, G. Shaw, and F. G. A. Stone, Chem. Comm., 1971, 1288 ; J.C.S. Dalton, 1972, 1781.
2_{2} A. Modinos and P. Woodward, J.C.S. Dalton, 1974, 2065.
$1.93 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1176$. Space group $P \overline{1} . \operatorname{Mo}-K_{x}$ X-radiation (graphite monochromator), $\lambda=0.71069 \AA$; $\mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=74.0 \mathrm{~cm}^{-1}$.

Structure Solution and Refinement.-Solution of the Patterson synthesis revealed the locations of the three metal atoms and the three phosphorus atoms. Isotropic refinement with unit weights gave $R 0.169\left(R^{\prime} 0.205\right)$, and an electron-density difference synthesis revealed all remaining non-hydrogen atom positions. Further isotropic refinement with unit weights gave $R 0.088\left(R^{\prime} 0.105\right)$. Anisotropic thermal parameters were then introduced for the three metal atoms only, and hydrogen atoms were incorporated at calculated positions ($\mathrm{C}-\mathrm{H} 0.99 \AA, U 0.08 \AA^{2}$), but because this gave more variables than the least-squares refinement program could cope with simultaneously, two overlapping blocks were defined: (i) scale factor, all temperature factors, and positional parameters for $\mathrm{M}_{3} \mathrm{P}_{3} \mathrm{O}_{5}$ only, followed by (ii) scale factor, all positional parameters, and thermal parameters for $\mathrm{M}_{3} \mathrm{P}_{3} \mathrm{O}_{5}$ only. This choice of variables was made so as to include all with correlation coefficients >0.1 within the same cycle. Next, anisotropy was allowed for $\mathrm{M}_{3} \mathrm{P}_{3} \mathrm{O}_{5}$ and a non-unit weighting scheme devised: $1 / w=a+b|F|+c|F|^{2}$ with $a=100, b=-1.3$, and $c=0.0068$. Using observed reflections only, as before, and block refinement, this gave $R 0.062\left(R^{\prime} 0.072\right)$. This refinement was repeated using all 5002 reflections having $I>0$. As expected, this made the agreement indices worse but the standard deviations better ($R \quad 0.090, R^{\prime}$ 0.090). Finally, because of the high X-ray absorption of the crystal (transmission coefficients varied between 0.55 and 0.75) a correction was applied ${ }^{3}$ by use of a grid of $10 \times$ 10×20. Refinement to convergence gave, surprisingly, a higher agreement index but with no significant change in structural detail ($R 0.100, R^{\prime} 0.106$). The results of this last refinement are those given in Tables 1 and 2. The final difference synthesis showed no electron density >1.4 or $<-1.7 \mathrm{e} \AA^{-3}$, except in the neighbourhood of the metal atoms where maxima of 4.1 and minima of $-3.4 \mathrm{e}^{\AA^{-3}}$ were observed. In the final least-squares refinement cycle the mean shift-to-error ratio was 0.01 . The atomic scattering factors were the analytic types of ref. 4 for platinum and ruthenium (corrected for anomalous dispersion), ${ }^{5}$ carbon,
${ }^{3}$ P. Coppens and R. F. Stewart, ABSORB, part of ref. 7.
${ }^{4}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
5 D. T. Cromer, Acta Cryst., 1965, 18, 17.

Table 1
Atomic positional (fractional co-ordinates) and thermal parameters, with estimated standard deviations in parentheses

Atom	x	y	z	$\begin{gathered} 10^{2} U 1 \\ \AA^{2 *} \end{gathered}$
$\mathrm{Pt}(1)$	$0.32203(8)$	0.31558 (4)	$0.39671(10)$	\dagger
$\mathrm{Pt}(2)$	0.490 26(8)	$0.24590(4)$	$0.53563(10)$	\dagger
Ru	0.265 38(16)	$0.19648(9)$	$0.45761(20)$	\dagger
$\mathrm{P}(1)$	$0.2643(6)$	0.4043(3)	0.2813 (7)	\dagger
$\mathrm{P}(2)$	0.6877 (6)	0.2343 (3)	0.6271 (8)	\dagger
$\mathrm{P}(3)$	$0.3519(6)$	0.1800 (3)	0.2192 (7)	${ }^{\dagger}$
C(1)	0.4977 (30)	0.3389(15)	$0.4737(35)$	6.6(9)
$\mathrm{O}(1)$	$0.5687(24)$	$0.3788(10)$	$0.4687(33)$	\dagger
$\mathrm{C}(2)$	$0.4252(21)$	$0.1565(11)$	0.5796(26)	3.7(5)
$\mathrm{O}(2)$	$0.4529(19)$	0.1110 (7)	$0.6279(26)$	${ }_{+}^{+}$
C(3)	$0.1642(23)$	$0.2647(11)$	$0.3459(27)$	4.2(6)
$\mathrm{O}(3)$	$0.0625(15)$	$0.2732(8)$	0.2886(20)	\dagger
$\mathrm{C}(4)$	$0.1733(25)$	0.1218(13)	$0.4689(30)$	$5.1(6)$
$\mathrm{O}(4)$	$0.1208(24)$	$0.0764(10)$	0.4848(27)	(
C(5)	$0.2005(22)$	$0.2123(10)$	$0.6500(27)$	3.8(5)
$\mathrm{O}(5)$	0.1470 (24)	$0.2257(12)$	$0.7504(26)$	+
$\mathrm{C}(10)$	0.3599 (32)	0.4720 (15)	$0.3180(38)$	7.5(9)
$\mathrm{C}(20)$	$0.8085(30)$	$0.2656(14)$	$0.4893(36)$	6.9(8)
$\mathrm{C}(30)$	$0.3925(28)$	0.2483(13)	$0.0864(33)$	6.1 (7)
C(11)	$0.2694(22)$	0.4026(11)	$0.0749(27)$	4.1 (6)
C(111)	$0.1737(25)$	0.3732(12)	$0.0089(30)$	$5.2(7)$
C(112)	$0.1848(31)$	0.3651 (15)	-0.1492(37)	$7.2(9)$
C(113)	$0.2880(27)$	0.3847(13)	-0.2251(33)	$5.9(7)$
C(114)	0.3821 (35)	0.4143(17)	-0.1675(42)	8.4(10)
C(115)	$0.3696(30)$	0.4238(14)	-0.0021(36)	6.8(8)
$\mathrm{C}(12)$	$0.1042(22)$	0.4273(11)	0.3191 (26)	$4.0(6)$
$\mathrm{C}(121)$	$0.0407(26)$	0.4034(12)	$0.4404(31)$	5.4(7)
$\mathrm{C}(122)$	-0.0771(37)	0.4182(18)	0.4736(44)	9.0 (11)
$\mathrm{C}(123)$	-0.1346(37)	0.4584(18)	0.3800 (44)	9.0(11)
$\mathrm{C}(124)$	-0.0777(37)	0.4871(18)	$0.2486(44)$	9.0 (11)
C(125)	$0.0459(33)$	0.4709(16)	$0.2110(39)$	7.8(9)
$\mathrm{C}(21)$	$0.7340(23)$	0.1582(11)	$0.6835(27)$	4.3 (6)
C(211)	0.8087(22)	0.1296(11)	0.6015(26)	4.0 (6)
$\mathrm{C}(212)$	0.8296(29)	0.0690(14)	$0.6444(35)$	6.5(8)
$\mathrm{C}(213)$	$0.7800(28)$	$0.0374(13)$	0.7747 (34)	6.2(8)
$\mathrm{C}(214)$	$0.6985(25)$	0.0683(12)	$0.8604(30)$	5.0 (6)
$\mathrm{C}(215)$	$0.6734(28)$	0.1263(14)	$0.8145(34)$	6.4(8)
$\mathrm{C}(22)$	$0.7295(22)$	0.2716(11)	0.7876(26)	4.0 (5)
$\mathrm{C}(221)$	$0.6556(31)$	0.3145(15)	$0.8425(37)$	7.1 (9)
$\mathrm{C}(222)$	$0.6900(41)$	0.3426(19)	$0.9713(48)$	10.1(12)
$\mathrm{C}(223)$	$0.8006(38)$	$0.3295(18)$	$1.0430(45)$	9.3 (11)
$\mathrm{C}(224)$	$0.8696(37)$	$0.2861(18)$	1.0016(44)	9.0 (11)
$\mathrm{C}(225)$	$0.8391(28)$	0.2578(13)	$0.8749(33)$	6.1 (7)
$\mathrm{C}(31)$	$0.4932(21)$	0.1383(10)	$0.2340(25)$	3.7(5)
$\mathrm{C}(311)$	$0.6096(31)$	$0.1662(15)$	$0.2037(37)$	7.1 (8)
$\mathrm{C}(312)$	$0.7221(32)$	$0.1311(16)$	0.2308(38)	7.6(9)
C(313)	$0.7111(33)$	0.0746 (16)	$0.2763(39)$	7.7(9)
C(314)	$0.5976(28)$	$0.0443(14)$	$0.3079(34)$	6.3(8)
$\mathrm{C}(315)$	$0.4904(27)$	$0.0789(13)$	0.2823 (33)	6.0(7)
C(32)	$0.2542(21)$	$0.1361(10)$	$0.0987(26)$	3.8 (5)
$\mathrm{C}(321)$	$0.3055(25)$	$0.1064(12)$	$-0.0137(30)$	5.1 (6)
C(322)	0.2290 (27)	$0.0768(13)$	-0.1088(32)	5.7(7)
$\mathrm{C}(323)$	$0.1001(29)$	$0.0753(14)$	$-0.0918(35)$	6.6(8)
C(324)	$0.0447(32)$	$0.1054(15)$	0.0109(39)	7.6(9)
$\mathrm{C}(325)$	$0.1261(29)$	$0.1367(14)$	$0.1080(35)$	6.5(8)

* $B=8 \pi^{2} U$. \dagger Anisotropic thermal parameters in the form: $\exp \left\{-2 \pi^{2}\left[U_{11} a^{* 2} h^{2}+U_{22} b^{* 2} k^{2}+U_{33}{ }^{* 2} l^{2}+2 U_{12} a^{*} b^{*}-\right.\right.$ $\left.\left.h k+2 U_{13} a^{*} c^{*} h l+2 U_{23} b^{*} c^{*} k l\right]\right\}$, with parameters $\left(\times 10^{2}\right):$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Pt}(1)$	$3.21(5)$	$4.49(6)$	$3.60(5)$	$0.62(4)$	$-0.58(4)$	$-0.58(4)$
$\mathrm{Pt}(2)$	$2.86(5)$	$4.99(6)$	$3.77(6)$	$0.49(4)$	$-0.84(4)$	$-0.47(4)$
Ru	$2.55(9)$	$4.51(12)$	$3.20(10)$	$0.28(8)$	$-0.08(8)$	$-0.73(8)$
$\mathrm{P}(1)$	$4.0(4)$	$4.2(4)$	$4.3(4)$	$0.5(3)$	$-0.8(3)$	$-0.2(3)$
$\mathrm{P}(2)$	$3.2(3)$	$6.3(4)$	$4.2(4)$	$0.4(3)$	$-0.3(3)$	$-0.3(3)$
$\mathrm{P}(3)$	$3.2(3)$	$4.4(4)$	$3.8(3)$	$0.7(3)$	$-0.2(3)$	$-0.9(3)$
$\mathrm{O}(1)$	$9.1(17)$	$5.6(14)$	$15.9(25)$	$-3.6(12)$	$-6.2(17)$	$2.4(15)$
$\mathrm{O}(2)$	$7.2(13)$	$2.1(9)$	$11.6(17)$	$1.4(9)$	$-4.2(12)$	$1.2(10)$
$\mathrm{O}(3)$	$3.3(9)$	$6.7(12)$	$6.5(12)$	$0.6(8)$	$-4.1(9)$	$-0.3(9)$
$\mathrm{O}(4)$	$10.8(18)$	$5.5(13)$	$9.4(17)$	$-2.1(12)$	$4.8(14)$	$-0.4(12)$
$\mathrm{O}(5)$	$10.5(19)$	$11.3(20)$	$7.3(15)$	$2.2(15)$	$4.6(14)$	$-1.8(14)$

Table 2
Bond lengths (\AA) and angles (${ }^{\circ}$)

(a) Distances		$\mathrm{Pt}(1)-\mathrm{C}(1)-\mathrm{Pt}(2)$	(11)
(i) Metal carbonyl framework		$\mathrm{Pt}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	141.1(26)
$\mathrm{Pt}(1)-\mathrm{Pt}(2)$	2.647(2)	$\mathrm{Pt}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	139.1(26)
$\mathrm{Pt}(1)-\mathrm{Ru}$	2.707(2)	$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{P}(1)$	100.9(9)
$\mathrm{Pt}(2)-\mathrm{Ru}$	2.729 (2)	$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{C}(3)$	97.7(7)
$\mathrm{Pt}(1)-\mathrm{C}(1)$	2.07(3)	$\mathrm{Pt}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	137.7(19)
$\mathrm{Pt}(2)-\mathrm{C}(1)$	2.09 (3)	$\mathrm{Ru}-\mathrm{C}(3)-\mathrm{O}(3)$	140.7(19)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.14 (4)	$\mathrm{Ru}-\mathrm{C}(3)-\mathrm{Pt}(1)$	81.4(9)
$\mathrm{Pt}(1)-\mathrm{C}(3)$	2.08 (2)	$\mathrm{Ru}-\mathrm{Pt}(1)-\mathrm{C}(3)$	49.2(7)
$\mathrm{Ru}-\mathrm{C}(3)$	2.07(2)	$\mathrm{Pt}(1)-\mathrm{Ru}-\mathrm{C}(3)$	49.4(7)
$\mathrm{C}(3)-\mathrm{O}(3)$	1.21 (3)	$\mathrm{Ru}-\mathrm{C}(2)-\mathrm{Pt}(2)$	79.1(8)
$\mathrm{Pt}(2)-\mathrm{C}(2)$	2.09 (2)	$\mathrm{Ru}-\mathrm{Pt}(2)-\mathrm{C}(2)$	52.2(6)
$\mathrm{Ru}-\mathrm{C}(2)$	2.19 (2)	$\mathrm{Pt}(2)-\mathrm{Ru}-\mathrm{C}(2)$	48.7(6)
$\mathrm{C}(2)-\mathrm{O}(2)$	1.11 (3)	$\mathrm{Pt}(2)-\mathrm{C}(2)-\mathrm{O}(2)$	143.1(20)
$\mathrm{Ru}-\mathrm{C}(4)$	1.90 (3)	$\mathrm{Ru}-\mathrm{C}(2)-\mathrm{O}(2)$	137.6(20)
$\mathrm{C}(4)-\mathrm{O}(4)$	$1.14(3)$	$\mathrm{C}(1)-\mathrm{Pt}(2)-\mathrm{P}(2)$	99.6(9)
$\mathrm{Ru}-\mathrm{C}(5)$	1.93(2)	$\mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{C}(2)$	97.9(7)
$\mathrm{C}(5)-\mathrm{O}(5)$	1.14(3)	$\mathrm{C}(2)-\mathrm{Ru}-\mathrm{P}(3)$	91.9(6)
(ii) Methyldiphenylphosphine		$\mathrm{Pt}(2)-\mathrm{Ru}-\mathrm{P}(3)$	89.8(2)
		$\mathrm{C}(3)-\mathrm{Ru}-\mathrm{P}(3)$	88.3(7)
$\mathrm{Pt}(1)-\mathrm{P}(1)$	2.24(1)	$\mathrm{C}(3)-\mathrm{Ru}-\mathrm{C}(4)$	110.8(11)
$\mathrm{P}(1)-\mathrm{C}(10)$	1.85(3)	$\mathrm{C}(2)-\mathrm{Ru}-\mathrm{C}(4)$	92.8(10)
$\mathrm{P}(1)-\mathrm{C}(11)$	1.85(2)	$\mathrm{C}(3)-\mathrm{Ru}-\mathrm{C}(5)$	91.4(10)
$\mathrm{P}(1)-\mathrm{C}(12)$	1.85(2)	$\mathrm{C}(2)-\mathrm{Ru}-\mathrm{C}(5)$	87.5(9)
$\mathrm{C}(11)-\mathrm{C}(111)$	$1.36(4)$	$\mathrm{C}(4)-\mathrm{Ru}-\mathrm{C}(5)$	91.5(11)
$\mathrm{C}(111)-\mathrm{C}(112)$	1.45(4)	$\mathrm{P}(3)-\mathrm{Ru}-\mathrm{C}(5)$	177.8(7)
$\mathrm{C}(112)-\mathrm{C}(113)$	1.33(4)	$\mathrm{P}(3)-\mathrm{Ru}-\mathrm{C}(4)$	90.7(9)
$\mathrm{C}(113)-\mathrm{C}(114)$	1.32 (5)	$\mathrm{Ru}-\mathrm{C}(4)-\mathrm{O}(4)$	175.7(25)
$\mathrm{C}(114)-\mathrm{C}(115)$	$1.52(5)$	Ru-C(5)-O(5)	169.0(22)
$\mathrm{C}(115)-\mathrm{C}(11)$	1.32(4)	(ii) Methyldiphenylphosphine	
$\mathrm{C}(12)-\mathrm{C}(121)$	$1.33(3)$		
$\mathrm{C}(121)-\mathrm{C}(122)$	1.36(5)	ligands	
$\mathrm{C}(122)-\mathrm{C}(123)$	1.33(5)	$\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(10)$	117.2(11)
$\mathrm{C}(123)-\mathrm{C}(124)$	1.40(5)	$\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	109.2(8)
$\mathrm{C}(124)-\mathrm{C}(125)$	1.43 (5)	$\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(12)$	117.3(7)
$\mathrm{C}(125)-\mathrm{C}(12)$	1.45(4)	$\mathrm{C}(10)-\mathrm{P}(1)-\mathrm{C}(11)$	105.8(13)
$\mathrm{Pt}(2)-\mathrm{P}(2)$	2.28(1)	$\mathrm{C}(10)-\mathrm{P}(1)-\mathrm{C}(12)$	101.6(14)
$\mathrm{P}(2)-\mathrm{C}(20)$	1.84(3)	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(12)$	104.4(11)
$\mathrm{P}(2)-\mathrm{C}(21)$	1.81(2)	$\mathrm{Pt}(2)-\mathrm{P}(2)-\mathrm{C}(20)$	112.3(10)
$\mathrm{P}(2)-\mathrm{C}(22)$	1.79(3)	$\mathrm{Pt}(2)-\mathrm{P}(2)-\mathrm{C}(21)$	$117.2(8)$
$\mathrm{C}(21)-\mathrm{C}(211)$	1.32(4)	$\mathrm{Pt}(2)-\mathrm{P}(2)-\mathrm{C}(22)$	$117.2(8)$
$\mathrm{C}(211)-\mathrm{C}(212)$	1.40 (4)	$\mathrm{C}(20)-\mathrm{P}(2)-\mathrm{C}(21)$	104.2(13)
$\mathrm{C}(212)-\mathrm{C}(213)$	1.39(4)	$\mathrm{C}(20)-\mathrm{P}(2)-\mathrm{C}(22)$	101.6(13)
$\mathrm{C}(213)-\mathrm{C}(214)$	1.41 (4)	$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{C}(22)$	102.5(11)
$\mathrm{C}(214)-\mathrm{C}(215)$	1.36(4)	$\mathrm{Ru}-\mathrm{P}(3)-\mathrm{C}(30)$	116.4(10)
$\mathrm{C}(215)-\mathrm{C}(21)$	1.44(4)	$\mathrm{Ru}-\mathrm{P}(3)-\mathrm{C}(31)$	113.8(8)
$\mathrm{C}(22)-\mathrm{C}(221)$	1.40(4)	$\mathrm{Ru}-\mathrm{P}(3)-\mathrm{C}(32)$	117.0(8)
$\mathrm{C}(221)-\mathrm{C}(222)$	1.41 (6)	$\mathrm{C}(30)-\mathrm{P}(3)-\mathrm{C}(31)$	104.8(12)
$\mathrm{C}(222)-\mathrm{C}(223)$	1.37(6)	$\mathrm{C}(30)-\mathrm{P}(3)-\mathrm{C}(32)$	101.1(12)
$\mathrm{C}(223)-\mathrm{C}(224)$	1.33(6)	$\mathrm{C}(31)-\mathrm{P}(3)-\mathrm{C}(32)$	101.8(11)
$\mathrm{C}(224)-\mathrm{C}(225)$	$1.39(5)$	(c) Contact distances	
$\mathrm{C}(225)-\mathrm{C}(22)$	1.43(4)		
$\mathrm{Ru}-\mathrm{P}(3)$	2.40 (1)	$\mathrm{C}(10) \cdots \mathrm{C}(115)$	3.17(5)
$\mathrm{P}(3)-\mathrm{C}(30)$	1.86(3)	$\mathrm{C}(10) \cdots \cdot \mathrm{H}(115)$	2.69
$\mathrm{P}(3)-\mathrm{C}(31)$	1.81 (2)	$\mathrm{C}(10) \cdots \mathrm{C}(125)$	3.49(5)
$\mathrm{P}(3)-\mathrm{C}(32)$	$1.84(2)$	$\mathrm{C}(20) \cdots \mathrm{C}(211)$	3.10(4)
$\mathrm{C}(31)-\mathrm{C}(311)$	1.38(4)	$\mathrm{C}(20) \cdots \cdot \mathrm{H}(211)$	2.61
C(311)-C(312)	1.47 (5)	$\mathrm{C}(20) \cdots \mathrm{C}(225)$	3.45(4)
$\mathrm{C}(312)-\mathrm{C}(313)$	1.29 (5)	$\mathrm{C}(30) \cdots \mathrm{C}(311)$	3.13(4)
$\mathrm{C}(313)-\mathrm{C}(314)$	1.38(5)	$\mathrm{C}(30) \cdots \cdot \mathrm{H}(311)$	2.66
$\mathrm{C}(314)-\mathrm{C}(315)$	1.41 (4)	$\mathrm{C}(30) \cdots \mathrm{C}(321)$	3.49(4)
$\mathrm{C}(315)-\mathrm{C}(31)$	$1.35(4)$	$\mathrm{C}(11) \cdots \cdot \mathrm{C}(125)$	3.21 (4)
$\mathrm{C}(32)-\mathrm{C}(321)$	$1.39(4)$	C(111) $\cdot \cdots$ C(125)	3.33(5)
$\mathrm{C}(321)-\mathrm{C}(322)$	$1.38(4)$	C(111) \cdots C(12)	3.25(4)
$\mathrm{C}(322)-\mathrm{C}(323)$	1.39 (4)	$\mathrm{C}(21) \cdots \mathrm{C}(225)$	3.14(4)
$\mathrm{C}(323)-\mathrm{C}(324)$	$1.35(5)$	$\mathrm{C}(215) \cdots \mathrm{C}(22)$	3.27(4)
$\mathrm{C}(324)-\mathrm{C}(325)$	1.45 (5)	C(31) \cdots C 321$)$	3.11 (4)
$\mathrm{C}(325)-\mathrm{C}(32)$	$1.37(4)$	$\mathrm{C}(315) \cdots \mathrm{C}(321)$	3.32(4)
(b) Angles		$\mathrm{C}(315) \cdots \cdot \mathrm{C}(32)$	3.24 (4)
(i) Metal carbony	mework	$\mathrm{C}(211)$ $\mathrm{C}(211)$$\cdots \cdot \mathrm{C}(312)$	$3.43(4)$ $3.43(4)$
$\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{Ru}$	60.45(5)	$\mathrm{O}(1) \cdots \mathrm{C}(10)$	3.30 (4)
$\mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{Ru}$	61.27(5)	$\mathrm{C}(2) \cdots \mathrm{C}(31)$	$3.25(3)$
$\mathrm{Pt}(1)-\mathrm{Ru}-\mathrm{Pt}(2)$	58.28(5)	$\mathrm{O}(2) \cdots \mathrm{C}(21)$	3.20(3)
$\mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{C}(1)$	$51.0(9)$	$\mathrm{O}(2) \cdots \mathrm{C}(215)$	2.92(4)
$\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{C}(1)$	50.1 (9)	$\mathrm{C}(4) \cdots \mathrm{C}(325)$	3.24(4)

	Table 2	(Continued)	
$\mathrm{C}(4) \cdots \mathrm{H}(325)$	2.76	$\mathrm{C}(221) \cdots \mathrm{C}\left(30^{\mathrm{IIII}}\right)$	$3.71(4)$
$\mathrm{C}(4) \cdots \mathrm{C}(32)$	$3.40(4)$	$\mathrm{Pt}(1) \cdots \mathrm{H}\left(13^{\mathrm{III}}\right)$	2.94
$\mathrm{Pt}(1) \cdots \mathrm{C}(30)$	$3.40(3)$	$\mathrm{C}(10) \cdots \mathrm{H}\left(114^{\mathrm{VV}}\right)$	2.93
$\mathrm{O}(3) \cdots \mathrm{H}\left(224^{\mathrm{I}}\right)$	2.39	$\mathrm{O}(2) \cdots \mathrm{H}\left(314^{\mathrm{V}}\right)$	2.52
$\mathrm{C}(20) \cdots \mathrm{O}\left(3 \mathrm{II}^{2}\right)$	$3.24(4)$	$\mathrm{C}(112) \cdots \mathrm{H}\left(124^{\mathrm{VI}}\right)$	2.72
$\mathrm{C}(20) \cdots \mathrm{C}\left(122^{\mathrm{II}}\right)$	$3.57(5)$	$\mathrm{C}(112) \cdots \mathrm{C}\left(124^{\mathrm{VI})}\right.$	$3.57(5)$

Roman superscripts refer to the following symmetry operations:
I $x-1, y, z-1$
$\operatorname{IV} 1-x, 1-y, \bar{z}$
II $x+1, y, z$
$\mathrm{V} 1-x, \bar{y}, 1-z$
III $x, y, z+1$
VI $\bar{x}, 1-y, \bar{z}$
oxygen, and phosphorus, and those of ref. 6 for hydrogen. All computational work was carried out (on the CDC 7600

Figure 1 The molecular structure viewed perpendicular to the plane of the metal-atom ring showing the atom numbering system used. Phosphorus $\mathrm{P}(3)$ of the third phosphine ligand is obscured by ruthenium
of the University of London) with the ' X-Ray System ' of programs. ${ }^{7}$ Observed and calculated structure factors are listed in Supplementary Publication No. SUP 21276 (28 pp., 1 microfiche).*

RESULTS AND DISCUSSION

The overall configuration of (I) is shown in Figure 1 and the contents of a unit cell in Figure 2. The central framework, comprising the three metal atoms, the three bridging carbonyl groups, one terminal carbonyl group on the ruthenium, and the phosphorus atoms on each of the platinum atoms, is substantially planar (Table 3). The remaining two ligands (phosphine and terminal carbonyl) are both attached to ruthenium and lie mutually trans in a direction approximately perpendicular to the plane of the RuPt_{2} ring. The skeleton of the molecule thus possesses an approximate mirror plane perpendicular to the RuPt_{2} plane passing through the Ru atom and the midpoint of the $\mathrm{Pt}-\mathrm{Pt}$ bond.

Inspection of the detailed molecular geometry (Table 2), however, reveals some anomalous features. First,

[^0]the two $\mathrm{Ru}-\mathrm{Pt}$ bond lengths differ by some $10 \sigma[\mathrm{Ru}-\mathrm{Pt}(1)$ $2.707(2), \mathrm{Ru}-\mathrm{Pt}(2) 2.729(2) \AA]$, and concomitantly the carbonyls which bridge these bonds have different $\mathrm{Ru}-\mathrm{C}$ distances $[\mathrm{Ru}-\mathrm{C}(2) \quad 2.195(23), \mathrm{Ru}-\mathrm{C}(3) \quad 2.072(24) ~ \AA]$; secondly, the equatorial terminal carbonyl group on

Table 3

Equations of some least-squares planes;* distances (\AA) of relevant atoms from these planes are given in square brackets
Plane (1): $\mathrm{Pt}(\mathbf{1}), \mathrm{Pt}(2), \mathrm{Ru}, \mathrm{P}(\mathbf{1}), \mathrm{P}(2), \mathrm{C}(\mathbf{1})-(4), \mathrm{O}(\mathbf{1})-(4)$

$$
-4.156 x+6.607 y+8.082 z=3.901
$$

$[\mathrm{Pt}(1) 0.053, \mathrm{Pt}(2) 0.016, \mathrm{Ru}-0.007, \mathrm{P}(1)-0.054, \mathrm{P}(2)$ $-0.143, \mathrm{C}(1) 0.099, \mathrm{O}(1) 0.027, \mathrm{C}(2) 0.051, \mathrm{O}(2) 0.025$, $\mathrm{C}(3)-0.039, \mathrm{O}(3)-0.023, \mathrm{C}(4)-0.026, \mathrm{O}(4) 0.021]$
Plane (2): $\mathrm{Pt}(1), \mathrm{Pt}(2), \mathrm{Ru}$

$$
-4.163 x+6.129 y+8.115 z=3.813
$$

$[\mathrm{P}(1)-0.153, \mathrm{P}(2)-0.151, \mathrm{C}(1) 0.037, \mathrm{O}(1)-0.055, \mathrm{C}(2)$ $0.079, \mathrm{O}(2) 0.077, \mathrm{C}(3)-0.068, \mathrm{O}(3)-0.057, \mathrm{C}(4) 0.018$, $\mathrm{O}(4) 0.087]$

* In the form $A x+B y+C z=D$ where x, y, and z are fractional co-ordinates.
ruthenium does not lie in the (approximate) mirror plane but is displaced towards $\mathrm{Pt}(2)$ until $\mathrm{C}(3)-\mathrm{Ru}-\mathrm{C}(4)$ has enlarged to 110.8 (11) and $\mathrm{C}(4)-\mathrm{Ru}-\mathrm{C}(2)$ shrunk to $92.8(10)^{\circ}$. While we can 'explain' these differences only tentatively we can at least put them into the perspective of the bonding situation in this metal cluster.

If the central bonding is regarded as multicentred and delocalised, the oxidation states of all the metal atoms as zero, and the valence orientations trigonal for platinum and trigonal bipyramidal for ruthenium, the main orbital interactions will then take place near the centres of the triangles formed by the carbonyl bridges and the metal-metal bonds. The bonding around the Ru atom can be described as somewhat distorted away from the ideal trigonal bipyramid with its equal equatorial angles towards square pyramidal.

In many compounds of type $\mathrm{MX}_{2} \mathrm{Y}_{3}$ (X axial, Y equatorial) it is found that two of the $\mathrm{M}-\mathrm{Y}$ bonds are equal in length but enclose an angle $>120^{\circ}$, while the third $\mathrm{M}-\mathrm{Y}$ bond is longer. ${ }^{8-11}$ The distortions in $\left[\mathrm{RuPt}_{2}(\mathrm{CO})_{5}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{3}\right]$ fit in well with this picture: the largest equatorial interligand angle [C(3)-Ru-C(4)] lies opposite to the longest bond, in the sense that such lengthening must affect both $\mathrm{Ru}-\mathrm{Pt}(2)$ and $\mathrm{Ru}-\mathrm{C}(2)$ because of the multicentred delocalised nature of the bonding.

The reasons for the asymmetric disposition of the equatorial $\mathrm{Ru}-\mathrm{CO}$ group $[\mathrm{C}(4)-\mathrm{O}(4)]$ are probably steric (Table 2) and arise because of severe restraints imposed on the ligands of the phosphorus $\mathrm{P}(3)$ cis to $\mathrm{C}(4)-\mathrm{O}(4)$ on the same ruthenium. The position of $\mathrm{C}(4)$ is deter-
${ }^{8}$ B. A. Frenz and J. A. Ibers, Internat. Rev. Sci., 1972, Phys. Chem. Ser. 1, 11, 33.
${ }^{9}$ K. N. Raymond, P. W. R. Corfield, and J. A. Ibers, Inorg. Chem., 1968, ry, 1362.
${ }_{10}$ H. M. Powell, D. J. Watkin, and J. B. Wilford, J. Chem. Soc. (A), 1971, 1803.
${ }^{11}$ J. K. Stalick and J. A. Ibers, Inorg. Chem., 1969, 8, 1084, 1094.
mined by its distances from $\mathrm{C}(325)$ and $\mathrm{H}(325)$, both of which are notably short. This distance cannot be decreased (which would make the position of the carbonyl group more symmetrical) without simultaneously decreasing the $\mathrm{C}(321)-\mathrm{C}(31)$ distance which is already short. Moreover, $\mathrm{C}(\mathbf{3 1})$ is directly bonded to $P(3)$, and therefore rather rigidly held. There are also many other short interligand contacts among the phosphine ligands, leaving little flexibility (in particular in the positioning of the phenyl rings). It is not clear, however, why the phosphine on the ruthenium adopts
mean $\mathrm{C}-\mathrm{O}$ bond lengths for the terminal and bridging carbonyl groups do not differ significantly [overall mean $\mathrm{C}-\mathrm{O}$ 1.15(4) A] while the $\mathrm{Pt}-\mathrm{C}$ (bridging carbonyl) distance is almost the same whether the other metal is Ru or Pt [overall mean $2.08(3) \AA$]; in each bridge the carbonyl group lies perpendicular to the corresponding metal-metal bond. The $\mathrm{Pt}-\mathrm{P}$ distances are normal [mean $2.262(7) \AA$], but for all the phosphines the $\mathrm{L}-\mathrm{P}-\mathrm{L}$ angles tend to be less than, and the $\mathrm{M}-\mathrm{P}-\mathrm{L}$ angles greater than, the ideal tetrahedral value. This is readily understood on the basis of electronegativity

Figure 2 The contents of the triclinic unit cell viewed in projection down a, looking away from the origin (note that the projection given in Figure 1 is of the right-hand molecule of this diagram).
an axial rather than an equatorial site, unless the mechanism of formation of the molecule predetermines this stereochemistry. The geometry of the rest of the molecule calls for little comment. The $\mathrm{Pt}-\mathrm{Pt}$ distance [2.647(2) \AA] lies in the expected range, ${ }^{12-15}$ but is notably shorter than the means (2.79 and $2.75 \AA$) determined ${ }^{16}$ for the two types of carbonyl-bridged $\mathrm{Pt}-\mathrm{Pt}$ bonds in the ' butterfly ' molecule $\left[\mathrm{Pt}_{4}\left(\mu_{2}-\mathrm{CO}\right)_{5}\left(\mathrm{PPhMe}_{2}\right)_{4}\right]$. In (I) the
${ }_{12}$ A. C. Skapski and P. G. H. Troughton, J. Chem. Soc. (A), 1969, 2772.
${ }^{13}$ K. K. Cheung, R. J. Cross, K. P. Forrest, R. WardIe, and M. Mercer, Chem. Comm., $1971,875$.

14 J. C. Calabrese, P. Chini, L. F. Dahl, G. Longoni, and S. Martinengo, J. Amer. Chem. Soc., 1974, 96, 2614.
effects, which will tend to concentrate electron density nearer to phosphorus in the $\mathrm{M}-\mathrm{P}$ bonds and nearer to carbon in the $\mathrm{P}-\mathrm{C}$ bonds. The few fairly short interligand contacts (Table 2) explain any departures from this pattern.
We thank Dr. Gordon Shaw for crystals, the S.R.C. for financial support, and the University of London Computer Centre for facilities.
[4/2230 Received, 28th October, 1974]
15 V. G. Albano and G. Ciani, J. Organometallic Chem., 1974, 66, 311.
${ }^{16}$ R. G. Vranka, L. F. Dahl, P. Chini, and J. Chatt, J. Amer. Chem. Soc., 1969, 81, 1574.

[^0]: * For details see Notice to Authors No. 7 in J.C.S. Dalton, 1974, Index issue.
 ${ }^{6}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1968, 42, 3175.
 ${ }_{7}$ Technical Report TR 192 of the Computer Science Center, University of Maryland, June 1972.

